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We study the asymptotic limiting functioW({G},q)=1lim,_... P(G,q)*", whereP(G,q) is the chromatic
polynomial for a graptG with n vertices. We first discuss a subtlety in the definitionfG},q) resulting
from the fact that at certain special pointgg, the following limits do not commute:
lim,_limg_.q_ P(G,q)""#limy_q lim,_... P(G,q)"". We then present exact calculationswi{{G},q) and
determine the corresponding analytic structure in the comglgtane for a number of families of graphs
{G}, including circuits, wheels, biwheels, bipyramids, dnyclic and twisted ladders. We study the zeros of
the corresponding chromatic polynomials and prove a theorem that for certain families of graphs, all but a
finite number of the zeros lie exactly on a unit circle, whose position depends on the family. Using the
connection ofP(G,q) with the zero-temperature Potts antiferromagnet, we derive a theorem concerning the
maximal finite real point of nonanalyticity i#/({G},q), denotedq., and apply this theorem to deduce that
q.(sq)=3 andq.(hc)=(3++/5)/2 for the square and honeycomb lattices. Finally, numerical calculations of
W(hc,q) and W(sqq) are presented and compared with series expansions and bounds.
[S1063-651%97)05605-5

PACS numbgs): 05.50:+q, 05.70.Fh, 64.60.Cn

[. INTRODUCTION (Heref is related to the actual free enerfyby f=— BF.)
For spin models in the physical temperature range0

An important question in graph theory is the following: < the partition functionZ is positive. In the case of the
Using q different colors, what is the number of ways chromatic polynomial, for sufficiently largg, P(G,q)>0.
P(G,q) in which one can color a grapgB, havingn vertices, In both cases, one naturally chooses the real positive
such that no two adjacent vertices have the same color? THé&/n)th roots in the respective equatiotis1) and(1.2).
function P(G,q), first introduced by Birkhoff1], is a poly- Although the number of colorg is an integer in the initial
nomial in q of ordern and has been the subject of math- mathematical definition of the chromatic polynomial, one
ematical study for many yeafg,3]; reviews are Refd4,5]. may generalizg to a real or, indeed, complex variable. We
Clearly, a general upper bound on a chromatic polynomial ishall consider this generalization here and study the function
P(G,q)=<q" since the right-hand side is the number of waysW({G},q) and the related zeros &(G,q) in the complex
that one can color tha-vertex graphG without any con- g plane for various families of grapiS. For certain ranges
straint. Consequently, it is of interest to study the limiting of realq, P(G,q) can be negative and, of course, wteis
function complex, so i(G,q), in general. In these cases it may not

be obviousa priori which of then roots
W({G},q)= lim P(G,q)'", (1.2)

n—oo

P(G,q)""={|P(G,q)|""e*™""}, r=0,,..n—1

where the symbofG} denotes the limit a;—« of the 1.3

family of n-vertex graphs of typ&.

This limit has some characteristics in common with theto choose in Eq(1.1). Consider the functioW({G},q) de-
thermodynamic limit in statistical mechanics, in which onefined via Eq.(1.1) starting withq on the positive real axis
defines a partition function at a given temperatdreand  where P(G,q)>0 and consider the maximal region in the
external fieldH asZ=E{Ui}e‘BH [where the Hamiltoniaf complexq plane, which can be reached by analytic continu-
describes the interactions of the spimsand 8= (kgT) 1] ation of this fur_1ctiqn. We denote this rt_egion Ia§._ Clearly,
and then, starting with a finite, usually regular, the phase choice in Eq1.3) for qe R, is that given byr
d-dimensionain-vertex latticeG=A with some specified =0, namelyP(G,q)*"=|P(G,q)|"". However, as we shall
boundary conditions one considers the reduced free energif€ Via exactly solved cases, there can also be families of

(per sité f in the thermodynamic limit graphs{G} for which the analytic structure oV({G},q)
includes other regions not analytically connectedr{q and
ef = lim z. (1.2 in these regions, there may not be any canonical choice of
n— phase in Eq(1.3). We shall discuss this further below.

Besides being of interest in mathematics, chromatic poly-
nomialsP(G,q) and their asymptotic limit$V/({G},q) have
*Electronic address: shrock@insti.physics.sunysb.edu a deep connection with statistical mechanics, specifically, the
TElectronic address: tsai@insti.physics.sunysb.edu Potts antiferromagndi6—8|. Denote the partition function
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for the (isotropic, nearest-neighbor, zero-fiplgtstate Potts This paper is organized as follows. In Sec. Il we discuss a
model at a temperature asZ=E{(,n}e‘ﬁH with the Hamil-  subtlety in the definition oW({G},q) and in Sec. Il we
tonian present some general results on the analytic structure of this

function in the complexy plane. In Sec. IV we give a num-
ber of exact solutions fow({G},q) for various families of
H= _JZ 5oiojv (1.4 graphs{G} and calculate the resultant diagrams, showing the
i analytic structure ofV({G},q) in the complexg plane. Sec-
where o;=1,...q are Z,-valued variables on each site tion V contains a discussion of zeros of chromatic polyno-
c A. Define mials for various families of graphs and, in particular, a theo-
rem on the location and density of zeros B{G,q) for
K=pJ, a=eX (1.5  certain familiesG. In Sec. VI we present a theorem specify-
ing the maximal value ofj, for a given latticeA, where the
For the Potts antiferromagnel€0), in the imitT—0, i.e.,  region boundary3 for W(A,q) crosses the real axis, and
K— —o0, the partition function only receives nonzero con- we apply this to specific lattices. Section VIl gives numerical
tributions from spin configurations in whicler;#0; for  calculations ofW(A,q) for the honeycomb and square lat-
nearest-neighbor verticésandj and hence, formally, tices and a comparison with largeseries. Section VIII con-
tains some concluding remarks.

Z(A,q,K=—xo)=P(A,q), (1.6
whence Il. DEFINITION OF W({G},q)
In order to discuss the subtlety in the definition of
exg f(A,q,K=—=)]=W(A,q), (1.7) W({G},q), we first recall the following general properties
whereG= A denotes the lattice. ;(r)ggﬁging the zeros of chromatic polynomials. First, for any

However, as we shall discuss in detail, the lidit1), and
hence the resultant functiof({G}=A,q), are not well de- P(G,q=0)=0. 2.0
fined at certain special pointg, without specifying further '
information. This constitutes a fundamental difference be'Second, for any grapls consisting of at least two vertices
tween the limits(1.1) and (1.2); in statistical mechanics, if (with a bond connecting them
the pointK, lies within the interior of a given physical
phase, therf(A,K) is a (rea) analytic function ofK. Fur- P(G,q=1)=0. (2.2
thermore, in statistical mechanics the linkt—K, for a

physical K and the thermodynamic limin—c [with the  Third, for any graphG containing at least one triangle,
d-dimensional volume vg{A)—«] commute[9]

P(G,q=2)=0 if GDA. 2.3
lim fim Z¥= fim lim z%n, (1.8 (G.q=2) 2 2.3

K—K K—K — . . . ele
e 0 —Fo M=® These properties are obvious from the definition of

P(G,q), given that one must color adjacent vertices with
different colors. Sinc®(G,q) is a polynomial, each of these
zeros at the respective valugg=0, 1, or 2 means that
P(G,q) must factorize according to

These limits still commute for compleX. In contrast, the
definition of W(A,q) involves a further subtlety since at
certain special pointgs the following limits donot commute
[for any choice ofr in Eq.(1.3)]:

lim lim P(G,q)¥"# lim lim P(G,q)*. (1.9 P(G,a)=(q-0d0)"*'Q(G,q), (2.4
n—e q—dg q—0s N

whereb(q) is a positive integer an@®(G,qy) # 0. One may

As we shall discuss, the origin of this noncommutativity of distinguish two particular cases that occur for cases we have
limits is an abrupt change in the behavior®fG,q) in the  studied: (i) b(gg)=bo+b.n and (i) b(qe)=by, where
vicinity of such a pointyg; for q#qs, P(G,q) grows expo- bo andb; are integers independent of In the first case,
nentially as the number of verticesin G goes to infinity:
P(G,q)~a" for some nonzera, whereas precisely af W({G},a)=(q—do)"lim Q{G},q)*", (2.9
=(s, it has a completely different type of behavior, which, n—e
in all of the cases considered here, R$G,qs) =co(Qqs),
wherecy(q) may be a constant, either independentnodr
dependent om in a way that does not involve exponential
growth, such as{1)". The set of special point&ys} in-
cludesq=0, g=1, and, on any grap& that contains at least
one triangle, als@=2; at these pointsP(G,q.)=0. It is
also possible folP(G,q,) to be equal to a nonzero constant
at gs. We shall discuss this further in Sec. Il.

Before proceeding, we mention that, in addition to Refs. lim x¥n=
[1-5], some relevant previous works are Réf0—-13. n—o

so that the two different orders of limits in E@L.9 do
commute. This type of behavior is observed for tree graphs,
our first example below. However, in all of the other cases
that we have studied, the second type of behaiipholds.
Hence, for these families of graphs, as a consequence of the
basic fact that

1 if x#0

0 if x=0 (2.6
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and  hence  lim_.limg_q(d—qp)*%’""=0  and cial pointsgs, it produces a functioWV({G},q) whose val-
limg_q liMn_..(q—0o)®@""=1, the noncommutativity of UesS at the points|s differ significantly from the values that
—dy — 0 1

l/n . . .
the limits in Eqg. (1.9 follows [for any value ofr in Eg. one would get forP(G,qs)™ with finite-n graphsG. The

(1L.3)]: definition based on the opposite order of limits
lim lim P(G,q)Y"=0, (2.7 W({G}.as)p, = lim lim P(G,q)*n (2.14
n—o g—(qg n—o g—qg

whereas

gives the expected results lik&/(G,qs)=0 for qs=0, 1,
lim lim P(G,q)lm: lim lim Q(G,q)l/ngﬁol (28) and, fOI’GQé, q:2, as We” aSW((tr|)n,q:3):l, but
4—0g N 4—0g N yields a functionW({G},q) with discontinuities at the set of

points{gs}. In our results below, in order to avoid having to
More generally, Eg.(1.1) is insufficient to define write special formulas for the pointg,, we shall adopt the

W({G},q) not just in the vicinity of a zero oP(G,q), but  definitionD,, but at appropriate places will take note of the

also in the vicinity of any special poinfs where the noncommutativity of limits(1.9).

asymptotic behavior oP(G,q) changes abruptly from As noted in the Introduction, the noncommutativity of
. limits (1.9 and resultant subtlety in the definition of
P(G.q)~a" asn—wx, (2.9  w({G},q) is fundamentally different from the behavior of

the (otherwise somewhat analogguanction e’(¢:K) in sta-

tistical mechanicgwhere for this discussion, we consider a
(2.10 general statistical mechanical model and its reduced free en-

ergy f and do not restrict the discussion to the Potts model
In case(ii) of Eq. (2.4), with b(qs) =b,, one encounters this The set{qs} includes certain discrete points lying within
type of abrupt change in behavior with the constant in Eqregions in the complex| plane whereW({G},q) is other-
(2.10 equal to zero. This is the origin of the noncommuta-Wwise an analytic function. Now, considering the thermody-
tivity of limits in Eq. (1.9) atq=0, 1, and, fortGD A, atq namic limit of a statistical mechanical model on a latt{e
=2. However, this noncommutativity is more general and=A, one knows that for physica{, after the additive term
can also occur when the constant in .10 is nonzero. ({/2)K+h is removed(where{ is the coordination number
An example is provided by the poigt=3 on the triangular of the lattice,A, h=8H, and this removes the trivial isolated
lattice; there are 36 ways of coloring a triangular lattice infinities in f at K=% and h=«), i.e., after defining
graph (with the technical provision that for finite triangular f(A,K)=({/2)K+h+f(A,K), the function f (A,K) is
lattice graphs, one uses boundary conditions that do not iranalytic within the interior of a given phase. We should re-
troduce frustration Denoting such a triangular lattice graph mark that in our studies of the properties of spin models
as (tri),, it follows that P((tri) ,,3)=6, which is of the form generalized to complex temperature, we have established
of Eq. (2.10 with a nonzero constant. For such cases, wheréhat there may be singularities in thermodynamic quantities

with a a nonzero constant, to

P(G,qs)=const asn—oo.

the constant in Eq(2.10 is nonzero, one has in the interiors of(complex-temperature extensions of physi-
cal) phases; specifically, we proved a theor@eorem 6 in

lim lim|P(G,q)|""=1, (2.1))  Ref.[14]) that on a lattice with odd coordination number, the

n—o g—qs zero-field Ising model partition function vanishes and the

free energyf has a negatively divergent singularity, at the
complex-temperature poit=—1, wherez=e 2! and K,
; : ln_ =BJ, is the Ising spin-spin coupling. For the honeycomb
lim _lim [P(G, )| al, 212 lattice, z=—1 lies on a phase boundafi5], but for the
heteropolygonal lattice denotedx32?, z=—1 lies in the
where, in generala# 1. Finally, the set of point§qs} also interior of the complex-temperature extension of the ferro-
may include a continuous set comprising part of a regiormagnetic phasgl4]. However, in the quantity analogous to
boundary, as will be discussed in Theorem 1, parbelow.  W(A,q), namely,e/™ K this singularity is a zero, not a
Because of the noncommutativitg.9), the formal defini-  discontinuity, and, furthermore, it is not associated with the
tion (1.1) is, in general, insufficient to defin/({G},q) at  type of noncommutativity analogous to Ed.9). The reason
the set of special pointgy}; at these points, one must also for this is that when one factorizes tigero-field partition
specify the order of the limits in E¢1.9). One can maintain function in a manner similar to E¢2.4),
the analyticity of W({G},q) at these special pointgs of
P(G,q) by choosing the order of limits on the right-hand Z(A,2)=(z+1)"224(A,z) (2.15
side of Eq.(1.9):

WG, = lim lim P(G,q)". 21 [which definesZ (A ,z)], the exponent of the factar+1 is
(1G} qS)an q'_rzs n'_rzo (G.q) 213 proportional ton, as in case(i) for Eqg. (2.4), so that the
following limits commute:

while

q—;qS n—o

As indicated, we shall denote this definition B§,, where
the subscript indicates the order of the limits. Although this lim limZ(A,,z)=lim lim Z(A,,2)=0. (2.16
definition maintains the analyticity oM({G},q) at the spe- z——1 noo n—o z——1
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One should also contrast the noncommutativityg) with cerns the dimensionality of the locus of points where the
the very different type of noncommutativity that applies to areduced free energl is nonanalytic. Where the premise of
symmetry-breaking order parameter such agriform or  the Yang-Lee theorenil6,17 holds(i.e., for physical tem-
staggerefl magnetization in a statistical mechanical spinperature and Hamiltonians with ferromagnetic, but not nec-
model(above its lower critical dimensionality, so that it has essarily nearest-neighbor, two-spin interaction®{=
a symmetry-breaking phase transitiotiere, in both the —X;,07J;0;—HZ,0; on arbitrary graphs it states that the
symmetric, high-temperature phase and the low-temperaturgeros ofZ in the complexu=e~?#H plane lies on the unit
phase with spontaneously broken symmetry, if one removesircle |u|=1 and hence, in the thermodynamic limit where
the external field before taking the thermodynamic limit, thethese merge to form the continuous locus of points wiiere

magnetization vanishes: is nonanalytic in thew plane, this locus is one dimensional.
o In the case of complex temperature, taking the Ising model
lim |lm0|V|(A,K,H)=0, (217 for illustration, the locus of points in the=e~2X plane is
n—o H—

usually one dimensional for isotropic spin-spin couplings
J, but on the heteropolygonal>48? lattice, it fills a two-
dimensional area in this plane even for isotropic couplings
T14]. In all of the exact results fow({G},q) that we shall
present below, the dimension of the continuous locus of

lim lmM(A,K,H)#0 for K>K,. (2.189 points whereW({G},q) is nonanalytic is difi3}=1.

Ho0 nsoo We next present a general theorem.

Theorem 1lLet G be a graph witm vertices and suppose

However, this noncommutativity is quite different from that that P(G,q) has the form
in Eq. (1.9: This is clear from the fact that, among other
things, Eq.(1.9) can occur at a discrete, isolated set of spe- 3
cial points g [as well as possibly a continuous set on a P(G.q)=a(a—-1) co(q)+§1 c,(@aj@", (3.9
region boundary of typée) in Theorem 1 beloy whereas
the noncommutativity in Eqs(2.17) and (2.18 occurs  wherec;(q) are polynomials irg. Herecy(q) may contain
throughout the low-temperature, broken-symmetry phase of-dependent terms, such as {)", but does not grow with
the spin model and, indeed, can be used to characterize thislike a". This form and the additional factorizati¢8.4) are
phase, with the spontaneous magnetizalit(K ,0) [defined,  motivated by the exact solutions to be presented below. Note
of course, by the second ordering of limi® 18] constitut-  that the fact thaP(G,q) is a polynomial guarantees that, for

whereas in the low-temperature, symmetry-broken phas
(K>K_,), there is a nonzero magnetization in the thermody
namic limit:

N

ing the order parameter. agivenG, N, is finite. For a fixedq and, more generally, for
a given region in the compley plane, we define a term
lIl. ANALYTIC STRUCTURE OF W({G},q) a,(q) to be leading if forg in this region|a,;(g)|=1 and

la,(g)|>1a;(q)| for all j#I. Without loss of generality, we
can write Eq(3.1) so that thea;(q) are different functions of
*h. Then our theorem states thaj if N,=2 and there exists
somel such thata,;(q)|>1 in a given region of the complex
q plane, then if in this regiofa;(q)|<1, the termg;(q) does

As noted, we shall consider the varialgjéo be extended
from the positive integers to the complex numbers. Althoug
for a given graphG, P(G,q) is a polynomial and hence,
fortiori, is an analytic function ofqg, the function
W({G},q) that describes the— limit of a given family of o contribute to the limiting functiomV(G,q): (b) if N,
graphs{G} will, in general, fail to be analytic at certain _ andc,(q) #0, then if|a,|<1, this term again does not

points. These points may form a discrete or qontim_;ous set; iéontribute toW(G,q), which is then determined bgo(q):
the set is continuous, it may separate certain regions of th )if N,=1 anda,(q) is a leading term in a given region of

complexq plane, which we denot®; . We shall denote the o 4 plane theni) if this region is analytically connected to
boyndary separating regiof and RJ asB(Ri.R;) a_nd the the positive real axis wher@(G,q)>0 so thatr=0 in Eq.
union of all components of regional boundaries Bs (1.3

=U; ;B(R;,R;). On these boundarie®/({G},q) is nonana-
lytic. We shall illustrate this with exact results below. These WG, a)=a,(q), (3.2
regions are somewhat similar to complex-temperature exten-
sions or complex-field extensions of physical phases in stawhile (i) if (i) is not the case, then at least in terms of
tistical mechanical models. However, there are also somgagnitudes, one has the result
fundamental differences. One of these is the noncommutativ-
ity of limits discussed in the preceding section. Another is [W{GY,9)|=a(q)]; (3.3
that in the case oV({G},q), it is not clear what would play
the role of the physical concept of a order parameter charadd) the regional boundarie separating regions where dif-
terizing a given phas@nd its complex extension, such as to ferent leading terms dominate are determined by the degen-
a complex temperatureTherefore, we shall use the terms eracy in magnitude of these leading termga(q)|
“region” and “region diagram” rather thaficomplex exten- =|a;.(q)|; (e) a regional boundary can also occur where one
sions of “phase” and “phase diagram.” crosses from a region where there is a leading teyfqg) to

A question that arises when one considers the somewhaine where there is no leading term but there is a nonzero
related regiongphasesin complex-temperature or complex- Co(q); this type of boundary is given by the equation
field variables for statistical mechanical spin models con{a,(q)|=1.
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Proof. Part (a) is clear since if |a;j(q)|<1, then
lim,_..a;(q)"=0, so in this limit it does not contribute to

W(G,q), which is determined by the leading term, as speci-

fied in part(c). Part(b) follows by the same type of logic.
Note that if there is nocg(g) term and if Ny=1 with
|a;(q)| <1, then in this case; still determinesN(G,q); an
example of this is provided by the regipa— 1| <1 for the
tree graphsT,, to be discussed below. Pdd) expresses the
fact that in the limith—o, the contributions of subleading

terms are negligible relative to that of the leading term and

hence the limiting functioW({G},q) depends only on this

leading term. As one moves from a region with one domi-

nant terma;(q) to a region in which a different term
a,,(q) dominates, there is a nonanalyticity\WM({G},q) as it
switches fromW({G},q)=a,(q) to W({G},q)=4a,.(q) for

r =0 and similarly for nonzero. This also provegd). State-
ment(e) follows in a similar way.

It is possible thatP(G,q) contains no term of the form
c;j(@)a;(q)" but instead only the termay(q). Moreover, in
the case whereP(G,q) does contain suclcj(q)a;(q)"
terms, there may exist a region in thge plane where
laj(q)|<1 for all j=1,...N,. In both of these cases,
W({G},q) is determined by the remaining functiag(q).

If G contains one or more triangle&, then one may
expressP(G,q) in the form

N

P(G,9)=q(q—1)(q—2) c:o<q>+j§l c;(q)ay(a)"

if GDA. (3.9
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FIG. 1. Diagram showing regional boundaries compridihfpr
W({C},q) for cyclic graphs and zeros &(C,,q) for n=19.

A. Tree graphs

A tree graphT,, is ann-vertex graph with no circuits and
has the chromatic polynomi&(T,,q)=q(q—1)""*. Using
the procedure discussed in Sec. Il, we choos® in Eq.
(1.3) and obtain

W({T}ha)=q-1. (4.1)

This applies for allg; i.e., W({T},q) is analytic throughout
the entire(finite) complexq plane.

B. Complete graphs

An n-vertex graph is termed ‘“complete” and denoted
K, if each vertex is completely connected by boriedge$

In this case, the same theorem applies, but with the furthewith all the other vertices. Thuk; is the triangle K, the

factorization(3.4) taken into account.

The subtlety in the definition dN({G},q) resulting from
the noncommutativity1.9) is evident in the form¢3.1) and
(3.4). With the definition(2.13), if there is a leading term
a, atqe=0, 1, and, fo{G}D A, also 2, then

IW({G}. o)l =la(qo)| (3.5

rather than zero, even thougi{G,q,) =0 at these points. If
there is no leading term in the vicinity of a givep, i.e., if
laj(do)|<1 for all j=1,...N,, then, if there is acy(q)
term,

IW{G}La)| = lim lim [co(q)|=1.

q*)qo n—o

(3.6

IV. EXACT SOLUTIONS FOR W({G},q)

tetrahedron, and so forth. The chromatic polynomial is
P(K,,q)=TI""(q—i). For a givenn, we may choose
=0 in Eqg. (1.3 by starting on the positive rea axis at a
valuegq>n-—1. This yields

W({K},q)=1. 4.2
With our definition(2.13), W({K},q) is analytic in the entire
(finite) g plane. The zeros d?(K,,,q) are comprised by the
set{go}={0,1,...n—1} and the noncommutativity of limits
(1.9 occurs at each of these points.

C. Cyclic graphs

For the cyclic grapiC,,, i.e., then circuit, the chromatic
polynomial isP(C,,q)=(q—1){(g—1)"" 1+ (—1)"}. We
find that the analytic structure oN({C},q) differs in the
two regionsR; and R, consisting ofq satisfying |q— 1|
>1 and|q—1|<1, respectively. The boundaly separating
these regions is thus the unit circle centeredjatl. These
regions are shown in Fig. 1. We calculate

In this section we calculate and discuss exact solutions for
W({C},q)=q—1

W({G},q) for various families{G} of graphs. We believe

that these give some interesting insights into the analytic

properties of such functions and also into the exact resultforqe R,, the first term in curly bracketqj-1)""1—0 as
obtained by Baxter for the triangular lattice. Unless other-n— and henceP(C,,q)—(q—1)(—1)". This function
wise cited, chromatic polynomials can be found, togethedoes not have a limit as—~. However, we can observe
with further properties of graphs, in Refg,5]. that

for geR;. 4.3
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[W({C},q)|=1 for qeR,. (4.9 40

[W({C},q)| is, in general, discontinuous alor§y For the °
choicer =0 in Eqg.(1.3), it is continuous afj=2 and has a 20 |
discontinuity of ' °

limW({C},q) - imW({C},q)=2 45  _

a\.0 a0 g oot o o o
at q=0. In Fig. 1 we have also plotted the zeros of
P(C,,q) for a typical valuen=19. These will be discussed .
in Sec. V. 207

D. Wheel graphs ’
The wheel graph (Wh)is defined as am—1 circuit “*%0 0.0 20 4.0 6.0 8.0

C,_, with an additional vertex joined to all of the—1 Re(a)

vertices ofC,,_; (which can be thought of as the center of
the wheel and is naturally defined far=3. We find that the
diagram describing the analytic structure 8f({Wh},q)
consists of the two regionR; andR, defined, respectively,
by |g—2|>1 and|g—2|<1, with the boundarB consisting N3 .
of the unit circle|q— 2| =1. (TheseR,; andR, should not be P(Un,@)=a(q—-1)(q=3){(q=3)""+(-1)"

FIG. 2. Diagram showing regional boundaries compridfpr
W({B},q) for bipyramid graphs and zeros d¥(B,,q) for n
=29.

confused with the regions discussed in the preceding subsec- (4.9
tion; we define the regionR; differently for each family of dqf thi lculat

graphs) This diagram is thus similar to Fig. 1, but with the and from this we caiculate

circle moved one unit to the right; for brevity we do not W({UL,a)=q-3 for qeR,. 4.9

show it. Using

P(Wh),,q)=0a(q—2){(q—2)""2—(-1)"}, (4.6 For geR,, the term ¢—3)" 3—=0 asn— and one is

again left with a discontinuous term-(1)". As before, one

we calculate has, in general that faq e R,,|W({U},q)|=1, and one can
formally choose the (h)th root such thaw({U},q)=—1
W({Wht,q)=q—-2 for qeR;. (4.7 in this region. The noncommutativity of limits in E¢L.9)

he di ings=0,1,2 Iso, ifi i
ForgeR,, since the first term in curly brackets in E4.6), g::(;u:ri astirt]ctzgl(sd:re;eopdo& qu)'z’o’s and also, if is odd,
ns h .

(q—2)""2, goes to zero an—o, one is left only with the
second term—~(—1)"; this term does not have a smooth
limit as n— and hence neither does the r{llth power of
this quantity. However|W({Wh},q)|=1 for qe R,. For- The bipyramidB,, is formed from the biwheel,, by re-
mally, one may choose the (WMth root such that moving the bond connecting the adjoined vertex to the center
W({Wh},q)=—1 for qe R,. The noncommutativity of lim-  vertex of the biwheel. A bipyramid graph can be inscribed on
its in Eq.(1.9) occurs at the discrete poings=0,1,2 and, for  the two-spheré&? and, in this sense, can be considered to be
evenn, also atq=3 since P((Wh),,n even,q=3)=0. two dimensional. The chromatic polynomial B, is
More generally, foig# 2, then— limit is not well defined 5 5
on the circle|q—2|=1. P(Bn,a)=a{(da—2)" “+(q—1)(q—3)""

One can also study wheel graphs with some spokes re- A\ a2
moved, which have been of recent intedds]. Let us define F(=DNA=3q D) (4.10
the “cut” wheel (cWh), , as then-vertex wheel graph with
| consecutive spokes removed. For example, from an anal
sis of the specific cask=2, we find the same boundat3,
|g—2|=1, as for the asymptotic limit of the wheel graphs

and, furthermoreW({cWh},q) =W({Wh},q). R;: Req)>$:, |q-2/>1; @.11)

F. Bipyramid graphs

Here we find a more complicated diagram describing the
%inalytic structurdsee also Ref.13)); this is shown in Fig. 2
and consists of three regions:

E. Biwheel graphs R,: Req)<%, |q—3[>1; (4.12

The biwheel graphJ,, is defined by adjoining a second
vertex to all of the other vertices in the wheel graphand
(Wh),_, and is naturally defined far=4. Here we find that
the diagram describing the analytic structureVe({U},q) Rs: |g—2|<1, |g—3|<L1. (4.13
consists of the two regionR; andR, defined, respectively,
by |g—3|>1 and|q—3|<1 with B consisting of the circle The boundaries between these regions are thus the two cir-
|g—3|=1. The chromatic polynomial for these graphs is cular arcs
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. T T 2.0
B(R;,R3y): qg=2+¢€'’, —3<0<3 (4.14
and 10t
: 2 4qr
B(R,,R;): q=3+¢€'?, 5 <¢<7 (4.15 _ i
£ 00 o S
together with the semi-infinite vertical line segments
5 ‘/j 1.0 |
B(Ri,Ry)={a}: Re(@)=3, [Im(q)|>~. '
(4.19
These meet at the intersection poigts 5/2+iv3/2. We find S 20 0o 10 210‘ 30 2.0
that Re(q)
W({B},a)=q-2 for geR;. (4.17 FIG. 3. Diagram showing regional boundaries comprigifpr
For the other regions, we have, in general, \iVé{sL},q) for cyclic ladder graphs and zeros BfL,,,q) for 2n

la—3| for geR; . . _
IW({B},q)|= 1 for qeR (4.19  regional boundan3 comprised by the line segmef4.16
3.

runs vertically through the origin of the d/plane and
With specific choices of (b)th roots, one can choose W:({B}.q) is not analytic at j=0.
W({B},q)=g—3 inR, and—1 in R;.
This example provides an illustration of the honcommu- G. Cyclic ladder graphs L ,,
tativity of limits (1.9) for a real noninteger poirtfy,, namely,

do=2(3+ \/E).:(Be)5=2.618.., where the rth Beraha ;¢4 as twan-circuit graphs(rings) C,,, one above the other,
number (Bej) is given by[19] with the ith vertex of onen circuit connected by a vertical
_ bond to theith vertex of the othen circuit. The chromatic
(Be);=4 cos(/r) (4.19 polynomial for this family of graphs was calculated in Ref.
for r=1,2,... . Thepoint (Be); lies in the regionR; where  [21] (where they are called prism graphs
g“—3g+1 is the dominant term and is one of the two roots 2 n B  n o
of this polynomialthe other root lies in regioR, and hence P(L2n,@)=(a"=30+3)"+(a-1){(3—-q)"+(1-a)

The cyclic ladder graphs withr2vertices can be visual-

plays no role inW({B},q)]. In Fig. 2 we have also plotted +0%2-3q+1. (4.21
zeros of the bipyramid chromatic polynomia(B,,q) for a
typical finite n=29. These will be discussed in Sec. V. From this we compute the region diagram shown in Fig.
SinceW({G},q) is bounded above by, it is common to 3, consisting of four regiong1) Ry, (2) R,, (3) R, and(4)
remove this factor and define a reduced function Rs, in which, respectively(1) (g>—3qg+3)", (2) and (3)
B (1-q)", and(4) (3—q)" are the leading terms. We find
W, ({G},a)=a*W({G},a), (4.20 ,
which has a finite limit agg|—. There have been a num- WLL@)=a"-3q+3 for qeRy, 422
ber of calculations of Taylor-series expansions in the vari- IW({L},q)|=|1—q| for geR, or R%, (4.23
able 1/g—1) for functions equivalent toV, in the case
whereG is a regular lattice; see, for example, ReX0] (and IW({L},q)|=|3—q| for geRs. (4.24)

earlier references thergifor the square, triangular, and hon-

eycomb lattices. Clearly, these series expansions rely on thegrmally, one can choose (@th roots so thatW({L},q)
propgrty_that, for these Iatticeyyr({G},q) is an analy'tic —1—q and 3-q in the respective regionsRg,R%) and
function in the 1¢ plane at the origin Ij=0. This analytic- R Note that, in contrast to the situation with the bipyramid
ity of W,(A,q_) at 1kq_=0 is proved by exact results f_or the graphsB,,, there is no region where i (q)|<1 so that
triangular lattice and is strongly supported by numerical calype co(q) term (which is equal tog?—3q+1 herd never
culations of zeros oP(A,q) for A=sq,hc[12], which show  4ominates. The boundary between regiBas R%, andR; is

that the respective regional boundaries for these three Iattice[ﬁe line|1—q|=|3—q| where these are both leading terms
are compact and do not extend to an infinite distance from}vhich is comprised of the line segments '

the origin in the complexy plane. However, our exact result
for the infiniten bipyramid functionW({B},q) and its re- B(Ry,Ry)={q}: Req)=2, 0<Im(q)<v2

gion diagram demonstrates that, in general, the infimite- (4.25
limit W, ({G},q) of chromatic polynomials for a given fam-

ily of graphs{G} is not guaranteed to be analytic atql/ and its complex conjugate foB(R3 ,Rs). Similarly, the
=0: in the case of the bipyramid graphs, the portion of theboundary separatinB; from R; is the locus of solutions to
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the degeneracy conditiog?—3q+ 3|=|3—q| where these {G}. Finally, as we shall show, the zeros populate the full
are leading terms. This boundary runs vertically through thecircle with constant density.

origin g=0 and extends over, on the right, to two complex- We find that the theorem applies for the following three
conjugate triple pointg=2= \/2i where it meets the vertical families of graphsi(i) cyclic, (ii) wheel, and(iii) biwheel.
line boundary(4.25 and its complex conjugate. Similarly, We begin with the cyclic graphs. The form B{C, ,q) dif-

the boundaries separatimy from R, andR, from R} are  fers depending on whether is even, sayn=2m, or odd,
comprised of the locus of solutions to the degeneracy condisay,n=2m+ 1. For evenn=4, we calculate the factoriza-
tion |g?—3q+ 3|=|1—q| where these are leading terms; astion
shown in Fig. 3, these boundaries extend from the above
triple points over to a fourfold intersection point@gt 2. In - .
parfssir?g, we note that our region diagrampdiffe?js from that P(C“=2m’q):q(q_1)120 {a-(1+el@riminTi);
reported in Ref.[21], where the right-most curves were . .

thought to terminate and hence not completely separate from x{q—(1+e @*TDm/(n=1)1 (5.2
R, the two additional regions that we have identifiedRys

andR% . In Fig. 3 we also show zeros &f(L,,,q) for 2n  and for oddn=5,
=38. We shall discuss these in Sec. V.

m-2

m—1

P(Chozms1,9)=0(q—1)(q—2 — (142D
H. Twisted ladder (Mobius) graphs (Cn=am:+1,9)=0(q /(@ )jﬂl fa=( © h

One may also consider ladder graphs, the ends of which x{q—(1+e-&m/(=Dy1 (5.2
are twisted once before being joined; these graphs are de-

noted twisted ladder or Mous graphsM,,. (It is easy 0 Special cases for lowen are P(C,,q)=q(q—1) and
see that if one twists the ends an even number of times, this(C,,q)=q(q—1)(q—2).

is equivalent to no twist, and any odd number of twists is For the wheel graphs' for odu=5, we find the factoriza-
equivalent to a single twigtThe chromatic polynomial is the tjon

same as that folk,,, except for thecy(q) term[21]
P(Wh)p—2m+1,0)=0(q—1)(q—2)
P(MZn1q)=(q2—3q+3)n+(q—1){(3—q)”_(1_q)n} n=2m+1 -
-1 (4.26 x [T {q—(2+e@+Dmiin-211
j=0

Since there is no region where the constant texstq)
(equal to—1 herg is dominant, we find that

WM}, a)=W({L},q). (4.27)

X{q_ (2+ e*(Zj +l)wi/(n72))}'
(5.3

and for evem=6,

V. THEOREM FOR ZEROS OF CHROMATIC P((Wh);—m,@)=0(q—1)(q—2)(q—3)

POLYNOMIALS FOR CERTAIN {G}
m-—2
A general question that one may ask about zeros of chro- > H [{q—(2+edm/(n-2)y1

matic polynomials is whether all, or some subset, of the ze- j=1
ros for ann-vertex graphG in the family{G} lie exactly on —2jmil(n-2)
the boundary curveB. One knows that as—, aside from X{q—(2+e )} (64
the discrete general set of zeros BfG,q), viz, go=0,1, . _
and, for graphs containing one or more triangigs,2, the Sp2e0|al dcssishfor Io_wen alre P((\2Nh)3,q3)—q(q—1)(q
remainder of the zeros merge to form the union of bound-~ ) anh é( h )4|,q)—qr$q— )(ql_ I)(q_f ). 6
aries B separating various regions in the compigxplane. For the biwheel graphs we calculate, for even6,
(Some of the sefqy} may also lie onB). However, the fact —nfa_ _ _
that the zeros move toward, and merge to form, this bound- P(Un=2m.@)=a(a=1)(a=2)(q=3)

ary B in then—« limit does not imply that, for finite graphs m-3 _ _

G, some subset of zeros will lie precisely ¢h We have x [I {g—(3+e@+Dmiln=3)y
investigated this question and have found that there do exist 1=0

some families of graphgG} for which the zeros of x{q—(3+e @tVM-31 (55

P(G,q) (aside from certain members of the defy}) lie
exactly on the respective boundary curvBs We shall  gnd for oddn=7,
present a theorem and proof on this. Interestingly, we find
that in all such caseg3 consists of a unit circle centered at a P(Upcome1.9)=09(q—1)(g—2)(q—3)(q—4)
certain integral point on the positive reglaxis. We empha- 2
size, however, that this type of behavior is special and is not =
shared b li i x [I {a—(3+e?im/n=3))
y other families of graphs that we have studied. Fur- =
thermore, for the families of graphs for which the theorem
does hold, the positions of the unit circles differ for different x{q—(3+e 2m/(n=3)y (5.6)
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Special cases for lower are P(U,,0)=0d(q—1)(q—2)(d  forming the boundarie®(R;,R3) and B(R,,R;), but the
—3) andP(Us,q)=q(q—1)(q—2)(q—3)(q—4). outer zeros do not lie very close to the line segments of
These factorizations constitute a proof of the following. B(R;,R,), given by Eq.(4.16), and only approach these line
Theorem 2Except for isolated zeros at=1 for C,,, at  segments slowly as increases. Since this latter behavior

q=0,2 for (Wh),, and atq=0,1,3 for U, the zeros of occurs only for the part of3 extending togq=3=*i, it is
P(C,.q), P((Wh),,q), andP(U,,q) all lie on the respec- plausible that it may be connected with the fact that this
tive unit circles|q—qe|=1, whereqe(C,)=1, qo(Wh,)  component of the boundary is noncompact. This inference is
=2, and go(U,)=3. Furthermore, the zeros are equally also consistent with the fact that of the families of graphs
spaced around the respective unit circles, and innthe  that we have studied, the bipyramid graphs form the only
limit, the densityg({G}, #) of zeros on the respective circles family with a noncompact3 and the only family for which
q=qo+€"’, —m<6<m, is a constant, independent @flf ~ we have observed this deviation.
one normalizeg according to

VI. THEOREM ON SINGULAR BOUNDARY OF W(A,q)

f g({G},0)do=1, (5.7) In recent work [23—25 on complex-temperature and
o Yang-Lee (complex-field singularities of Ising models, it
then has been quite fruitful to carry out a full complexification of
both the temperature-dependent Boltzmann weightz?
1 =e  and the field-dependent Boltzmann weight
9({G}'9):E for {G}={C}{wh}{U}. (5.8)  —g 284 and to study the singularities in the two dimen-
sional C2 manifold depending onz(u) or (u,ux). This ap-

For the cyclic ladder and twisted ladder graghs, and  proach unifies the previously separate analyses of complex-
M., , we find the type of behavior that occurs with complex-temperature and Yang-Lee singularities; one sees that a
temperature zeros of spin models: The zeros lie close to, b@iven singular pointZ.,u) or (Uc,u.) in the C? manifold
not, in general, precisely on, the asymptotic boundaBies manifests itself as a singular point in the compler u
This is illustrated by the plots of zeros B{Lsg,q) in Fig. 3. plane for a fixedu and, equivalently, as a singular point in
As one also finds in calculations of complex-temperature zethe complexu plane for fixedz or u.
ros in statistical mechanical spin modésee, e.g.[22,23), We find this approach to be equally powerful here. Start-
the densities of zeros along certain boundary curves are veing from the relatior(1.6) between the chromatic polynomial
small; in Fig. 3 this occurs oB(R;,R,) near the intersection and theT=0 Potts antiferromagnet on a gra@h we con-
pointq=2. Similar low densities of zeros were observed forsider the two-dimensional complex manifd@f spanned by
P(tri,q) on the boundary neag=0 and the rightmost (a,q) [wherea was defined in Eq(1.5]. For sufficiently
boundary neag=4 [12]. In statistical mechanics, the den- largeq, namely,q>2¢{, where( is the coordination number

sity of zerosg near a critical poing, behaves as of the latticeG= A, the Dobrushin theorem impli¢&6] that
the Potts antiferromagnet is disordered, with exponential de-
g~|z—z|* (5.9  cay of correlation functions, at=0. As one decreaseg the
antiferromagnetid AFM) ordering tendency of the system
wherea’ denotes the critical exponent describing ffead-  increases and, apdecreases through a critical value depend-

ing) singularity in the specific heat a=z. as one ap- ing on the dimensionalityd and lattice A, the model can
proaches this point from within the broken-symmetry pecome critical af=0 or, equivalentlyK=—o%. As one
phase: Csing~|z—zC|*“' [22]. Equivalently, the(leading  decreases further, the AFM critical temperature increases
singularity in the free energy a=z. is given byfg,;~|z  from zero to positive valueg.e., K increases from- to a
—2z,]27". (Similar statements apply for the approachzgo ~finite negative value The critical valueq, thus separates
from within the symmetric phase with the replacementtWo regionsing: (i) theq>qc region, where the system is
a'—a.) Analogously, in the present context, the density ofdisordered aff =0, and(ii) an interval ofq<q. where the
zeros ofP(G,q) for a finite graphG near a singular point System has AFM long-range order B0 (and for a finite

is determined by the nature of the singularity in theinterval 0ST<T., whereK,=J/kgT.). Now, using the re-
asymptotic functionV({G},q): If one denotes the singular- lations (1.6) and (1.7) and making the projection from the

ity in the function INM({G},q) at a pointq, as (a,q) space onto the read axis, just as the disordered,
Zy-symmetric phase of the Potts AFM must be separated by
|nW({G}vq)sing~|q_qC|27a£/’r (5.10 a nonanalytic phase boundary from the broken-symmetry

phase with AFM long-range ord¢R7], so also, making the
where a), will, in general, depend on the directidi®) of projection onto the read| axis for theW(A,q) function, it
approach tay., then the corresponding density of zeros offollows that the rangeg>q. and an adjacent intervaj

P({G},q) as one approaches this point is <. must be separated by a nonanalytic boundary. Further-
more, just as, by analytic continuation, the complex-
g({G}'q)~|q_qc|1—a;_ (5.1 temperature extension of the disordered phase of the Potts

antiferromagnet must be completely separated by a nonana-

For the bipyramid, as is evident in Fig. 2, one sees thatlytic phase boundary from the complex-temperature exten-

except for the general zeros @=0 and 1 and a zero very sion of the antiferromagnetically ordered phase, so also the
nearg=(Be);=2.618.., theinner zeros do lie near the arcs region in the complexg plane containing the line segment
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g>q, must be completely separated from the region containzeros calculated on the>8 hc lattice with CBC's cross the

ing the adjacent interval to the left of in this plane. Since

real axis atg=2.2, we find that these numerical results are

the zero-temperature criticality of the Potts AFM and theconsistent with the result of Theorem 3 for the thermody-
critical value g, are both projections of the singular point namic limit.

(a;=0,.) in the C? manifold, we have derived the follow-
ing theorem.

Theorem 3For a given lattice\, the pointq. at which the
rightmost region boundary fow(A,q) crosses the red
axis corresponds to the value @fat which the critical point

a. of the Potts antiferromagnet on this lattice first passes

through zero as one decreasgfrom large positive values.

This pointq is the maximal finite real point of nonanalytic-
ity of W(A,Qq).

We now discuss the application of this theorem to three

B. g, for the square lattice

For the square lattice, the PM-AFM critical point of the
Potts antiferromagnet is given §hg1]

(a+1)?=4—q, (6.4)
ie.,

as(sg=—-1++4—q. (6.5

specific two-dimensional2D) lattices. For this purpose, we As q decreases from 4 to 3, this value af increases from

recall that theg-state Potts model can be defined for nonin-

tegral as well as integral values gfbecause of the equiva-
lent representation of the partition functip®—8,28

z= 2, v"€gne", (6.1)
G'CG

whereG’ denotes a subgraph &=A, v=(a—1), b(G')
is the number of bonds, ami{G’) is the number of con-

nected components @’. [Recall that one can see the con-

nection of this with Eq.(1.6) by taking theK— —o(v—
—1) limit of Eq. (6.1), which yields the Whitney expression
for P(G,q) [2].]

A. g, for the honeycomb lattice

For the honeycomb(hc) lattice, the paramagnetic-
ferromagnetic(PM-FM) and PM-AFM critical points are
both determined by the equati¢f9]

g’+3q(a—1)—(a—1)3=0. (6.2
As g decreases in the range from 4ge (Be)s=2.618, one
of the roots of Eq(6.2) increases from-1 to 0. This root
can be identified as the AFM critical poiat(q) by going in
the opposite direction, increasing from its Ising valueq
=2 and trackinga.(q), which decreases from.(2)=2

—v3 to a[g=(Be);]=0, where the AFM phase is squeezed
out and there is no longer any finite-temperature AFM criti-

cal point, which now occurs only &=0. Hence our theo-
rem implies that

qc(hc)=#§=(8e)5=2.618.., (6.3

i.e., this is the value ofy where the rightmost regional

—1 to 0. Hence

dc(so)=3. (6.9

Our Theorem 3 then identifieg.(sq) as the point where the
rightmost region boundary dlN(sq,q) crosses the real axis

in the complexq plane. Using the same rough estimate for
the finite-size shift between the>8 square lattice with
CBC's and the thermodynamic limit as was observed for the
triangular lattice, viz.Aq=0.4, and noting that a curve of
zeros calculated for this finite square lattice crosses the real
axis atq=2.6[12], we see that our inferen¢é.6) is consis-
tent with the numerical calculations in R¢iL.2].

C. g, for the triangular lattice

Baxter's exact solution fokV(tri,q) [12] shows that in
this case

(6.7)

where the rightmost bounda§(R;,R,) crosses the real
axis. Theorem 3 implies that the two other singular points
where the boundarie(R,,R;) and B(R3,R;) cross this
axis, atq=3.82... and 0, respectively, also correspond to
singular points of the Potts antiferromagnet in thplane at
these twog values.

gc(tri)y=4,

VII. NUMERICAL CALCULATIONS OF W(A,q)
FOR A =sq,hc,tri

The effect of ground-state disorder and associated non-
zero ground-state entrof8y has been a subject of longstand-
ing interest. A physical example is ice, for whi&y=0.82
+0.05(K mal), i.e., Sy/kg=0.41+0.03[32,33. In statisti-
cal mechanical models, such a ground-state entropy may oc-

boundary ofW(hc,q) crosses the real axis in the complex cur in contexts such as the Isingr, equivalently,q=2

g plane[30]. We may compare this with the numerical cal-

culation of zeros ofP(hc,q), as a function ofg, on finite
honeycomb lattices in Refl2]. For this comparison, we

Pottg antiferromagnet on the triangulf84] or kagomed 35]
lattices, where there is frustration. However, ground-state en-
tropy can also occur in what is arguably a simpler context:

first note that from the analogous study of the triangularone in which it is not accompanied by any frustration. On a
lattice [12], one sees the crossing point of a boundary curvegiven lattice, for sufficiently large, Potts antiferromagnets

increases by aboutq=0.4 from an 88 triangular lattice
with cylindrical boundary condition€CBC'’s) to the thermo-

dynamic limit. Assuming that a similar finite-size shift oc-

exhibit ground-state entropy without frustration, restricting
the range to integral values gf this is true forg=3 on the
square and honeycomb lattices and der4 on the triangu-

curs for the honeycomb lattice and noting that the curve ofar lattice [36]. For the given range off on the respective
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lattices, since the internal enerdy approaches itsST=0
valueU(T=0)= —J(5UiUJ>T:0= 0 exponentially fast, it fol-
lows that forT—0, i.e., K— —o, limx_, _,.B8U=0. Hence, HH_@_Q’//"’
from the general relatio®= gU +f, it follows that, for this 0.95 |
range of values of], the ground-state entrogper sitg¢ and
reduced free energy for the Potts antiferromagnet are related
according to < 090 |

[=)
w

So(A,q)=f(A,q,K=—2)=InW(A,Qq) (7.1 /
and hence W(A,q) is a measure of this ground-state en-  0.85 ¢
tropy. Accordingly, it is of interest to calculat®/(A,q) for

> honeycomb lattice

various latticesA and values ofy. Moreover, from a math- = square lattice

ematical point of view, for positive integey, the numerical 0.80 . ‘ .

calculation of W(A,q) gives an accurate measure of the . 000 0.02 0.04 0.06 0.08
[

asymptotic growth oP(A,q)~W(A,q)" as the number of
lattice sitesn— .

Extending our earlier calculation ofV(hc,3) [30], we
have calculatedV(hc,q) for integer 4<g=<10. We use the
relation for the entropy

FIG. 4. Measurements of ground-state entr8gy as a function
of lattice size, for theq=4 Potts AFM on the honeycomb and
square lattices.

P tices, up to 2424, and double precision arithmetic in the
S(B)=S(B=0)+BU(B)— j upHdg', (7.2 present work. Our results fa¥(hc,q) are presented in Table
0 I (with conservatively estimated uncertainties given in paren-
thesey and plotted in Fig. 5, together with the respective
which is known to provide a very accurate method for cal-yajues obtained by evaluating the largeeries of Ref[20].

culating S, [37]. We start the integration g8=0 with S(B8  For a latticeA, this series has the form
=0)=Inq for the g-state Potts antiferromagnet and utilize a
q — 1) §/2_

Metropolis algorithm with periodic boundary conditions for

severalL X L lattices with the lengtit. varying over the val- W(A,q)=q W(A,q), (7.9
ues 4, 6, 8, 10, 12, 14, and 16 for all cases, and up to

=24 for certain cases. Sin¢#(K) very rapidly approaches where, as above; is the lattice coordination number and
its asymptotic value of 0 a& decreases past abolt=
—5, the right-hand side of Ed.7.2) rapidly approaches a — 1

constant in this region, enabling one to obtain the resultant WA, Q) =1+ > wy", y= a1 (7.9
value of S(B=2) for each lattice size. For each value of -t a
g, we then perform a least-squares fit to this data, extrapolatg
the result to the thermodynamic limit, and then obtdlih

0

or the honeycomb latticapV(hc,g)2=1+y5+ 2y*l+ 4y12

. . . +---, calculated througl©O(y*®) [20]. Because of the sign
from Eq.(7.1). We use double precision arithmetic for all of changes in the hc serigghe coefficients of the first five

our computations. Typically, we ran several thousandst o . L
) o erms are positive, while those of the remaining four terms
sweeps through the lattice for thermalization before calculat-

. . are negativg it is difficult to make a reliable extrapolation.
ing averages. Each average was calculated using betweeArécordingly for Table | and Fig. 5 we simply use a direct

9000 and 20 000 sweeps through the lattice. As we havg . . . o
. ; . valuation of the sum. As is evident from this figure, the
discussed in Refl30], for g=3 on the honeycomb lattice agreement with our Monte Carlo calculation is excellent.

(and also forq=4 on the square lattig¢ethe finite-size de- S
pendence ofS, is not simply of the formSo(A:L X L,q) From our result{6.3) above(see also our Ref.30)), it fol

=So(A,0) +_C5\q,)1|-72; we fit our measurements with an em- A £ |. values ofW(A,q) for A =hc,sq and 3=q=10 from
pirical function of the form Monte Carlo measurements, compared with laggseries. The en-
try for W(sq,3) is from the exact expression. See the text for further
So(A;Lx L,q>=so(A,q>+c<A“?1L‘2+c<A“P2L“‘+c<A“,éLE6- | detais.
7.3

o q W(hc,g) hc series  W(sqq) sq series
As an example, we show in Fig. 4 the ground-state entropy-

as a function ofL "2, for the caseq=4 on the square and 3 1.66005) 16600 1.5396@5 1.53960@7...

honeycomb lattices. As a check, we have confirmed that our 4 2.603§7) 2.6034  2.337(r) 2.3361
measurements yield numbers consistent with the exact result5 3.5796100 3.5795  3.251(10 3.2504
Sp=0 for g=2 andA =hc,sq. 6 4.565415 45651  4.200Q@2) 4.2001

In the course of these calculations, we have obtained a7 5.555617) 5.5553  5.166@5) 5.1667
measurement dfV(hc,3) that is more accurate than, and in 8 6.547920) 6.5481  6.143@0) 6.1429
excellent agreement with, the value that we reported recently 9 7.542422)  7.5426  7.125@2) 7.1250
in Ref. [30] (where we quoted the uncertainty very conser- 10  8.538¢25 8.5382  8.112@5) 8.1111
vatively). This improvement is due to our use of larger lat-
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10.0 " : " T

FIG. 5. Plot of W(A,q) for
A =sq,hc,tri. At the special points
gs=0,1 for all lattices, the zero
values (denoted by®) apply for
the order of limits in the definition
Dnqin Eq.(2.14. For the triangu-
lar lattice at the special poinig
=2,3, the respective values 0 and
1 (denoted byA) also apply for
this ordering of limits(2.14), as

[ ]
L
>

0.0

W(Aq)

he (MC
° he (MC) does the valudV(A,2); =1 for
0 8q (MC) i "“nq )
---- hc (series) A=sqg,hc. TheA=tri curve is
—-— sq (series) plotted for the definitionD, in
tri (exact) Eq. (2.13.
-10.0 ' : : : : : ' : : : : : :
-5.0 0.0 5.0 10.0

lows that the large series cannot be applied below  The coefficient of the. ~2 term agrees with a previous de-
=2.62 and we have plotted it only down to the integer valuetermination for thisqg=3 casg40]. Our fitting procedure for
q=3. For both the honeycomb and square lattices, we alsg=4 has been discussed in conjunction with &q3) above.
show the exact resultsV(A,2), =1 for A=hc,sq(as a We also compare our Monte Carlo calculations with the
- ; nd largeq series(7.4) and (7.5), which, for A =sq, was calcu-
s;upenmposeii circle i and. squareand W(A'_O)an lated toO(y*®) in Ref.[20]. The agreement is again excel-
=W(A,1)p =0 (as a filled circlg, but we emphasize that |ent. |n passing, we note that a calculation of the series for
these values assume the order of the limits in the definitioy(sqq) to O(y3%) has been reported in Re#1], but we
Dnq in EQ. (2.14 and the respective values calculated withhave checked that additional terms in this longer series have

the other order of limits in the definitioD,, in Eq. (2.13
for these latticegwhich values are not known exactlgould
well be different from thes®,, values.

a negligible effect in the comparison of the series with our
numerical results. Given our result thgg(sq)=3 in (6.6),
the largeq series cannot be applied fqr< 3. It is interesting

It is also of interest to compai/(A,q) for the other two  that the agreement between the series and our measurements
regular 2D lattices, square and triangular. Unlike the honeyis quite good even down to the respective region boundaries
comb lattice, there have been previous Monte C&ME)  that we have deduced gt(hc)=2.618 andy.(sq)=3. This
measurements for the square latiég] for lattice sizes be- suggests that the nonanalyticities at these respective points
tween 3x3 and 77 andq values up to 10. We have ex- on the honeycomb and square lattices are evidently not so
tended these to considerably larger lattices, includingtrong as to cause the series to deviate strongly from the
16X 16 for all g values. As a check, fay=3, from calcula-  actual values oW(A ,q).
tions onL XL lattices with periodic boundary conditions, for  In passing, we remark that of course our results are con-
L=4, 6, 8, 10, 12, 14, and 16, we obtain the fit sistent with the following rigorous boundséi) the general
upper boundV(A,q)<q; (ii) the upper bound for the square
lattice [42] W(sqQq)=<3i(q—2+g?°—4q+8), which is
more restrictive tharti) for g>3; (iii) the lower bound ap-
plicable for any bipartite latticeV(Ap,,q)=+vq—1; and
(iv) the lower bound for the square latti¢d2] W(sqgq)
=(q?—3q+3)/(q—1). Note that forq=2, both lower

This yields an asymptotic value that is in excellent agreePoundsiii) and (iv) are realized as equalitie®/(sq,2)=1.
ment with the exact result[39] Sy(sq,3)=3In(%) A_\.I.though there is a range mfappve_ 2 whereélv) lies bglqw
=0.431 523 11..[i.e., W(sq,3)= 1.539 600 7. ]: (ii), for q=3, (iv) lies above(iii), i.e., is more restrictive.
Some recent rigorous upper bounds B(G,q) for general
G have been given in Ref43], but these improve only the
prefactorA multiplying P(G,q)<Aq" and hence still yield
W(G,q)=<q, as in(i).

In the case of the triangular lattice, since, to our knowl-
edge, there is no numerical evaluation in the literature of the

Sy(sq,3=0.431 556- 1.095 289 2. (7.6)

| SO(qusexact_ SO(SQaaMC|
SO(SQ-3 exact

=0.76x10°4. (7.7
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expressions fow(tri,q) given in Ref.[12], we have carried S(A,q;T=0) In[W(A,q)]

this out and plotted the resultant function in Fig. 5. The point rs(A,a)= S(Aq,T=%) _ Ing (7.10
g=3 is an example of a special poigg discussed in Sec. Il, '

where the behavior oP(G,q) changes abruptly from Eq.

(2.9 to Eq.(2.10 and where, consequently, the two limits in

Eqg. (1.9 do not commute. As noted above, since there argyre monotonically increasing functions a@f. The ratio
just six ways of coloring a triangular latticequivalently, (A q) has a physical interpretation as measuring the re-
the ground state of the Potts AFM is sixfold degenerate siqual disorder present in tlipstate Potts antiferromagnet at
W(tri,3)p  =1. We have indicated this with a symbalin  T=0, relative to its value af =c. This ratio is substantial;
Fig. 5. However, with the other order of limit2.13, for example, from Table I, one sees thathc,3)=0.461 and
limg_.sW(tri,q) =W(tri,3)p #1. [The actual value is rg(sq,3)= 2In(3)/In3=0.393, while rg(hc,10=0.931 and
W(tri,3)p, ,=2] In Fig. 5, at the other special point rs(s9,10)=0.909. On the triangular lattice, ap increases
=0,1 (indicated by a filled circleandgs=2 (indicated by a from q=.4, one again fmds_ thaty, andrs m_onoton_lcally
triangle), we have shown the valuw(tri,q)anz 0. Again, increase; for examplerg(tri,4)=0.273, while rg(tri,10)

L N =0.852.
however,.because.of the noncommutativity of limits in Eq. Returning to the square and honeycomb lattices, although
(1.9 as discussed in Sec. Il, the valueW(trl,q)an calcu-

we cannot use our Monte Carlo method to evaluate
lated with the other order of ||m|t$213) is nonzero. Atq W(hC,q) for negativeq, we can use the |arg¢_series since
=1,2 it is positive, while af=0 the function has a discon- the negativey axis is in the regiorR, . Of course these series
tinuity involving a flip in sign: cannot be used all the way tp=0; in Fig. 5, we plot them
up tog=-—2.

lim W(tri,q)=— lim W(tri,q). (7.8 VIIl. CONCLUSION
q—0" g—0* '
In conclusion, we have presented some results on the ana-
) ) , , , Iytic properties of the asymptotic limiting function
The sign of W(tri,q) for negative realq is unambiguous W({G},q) obtained from the chromatic polynomial

since this interyal is part of the regidd, and where_, conse- P(G,q). We have pointed out that the formal equatidrt)
quently, there is a clear choice of therfjth root, given by js' ot in general, sufficient to define the function

r=0,in Eq.(1.3)._ This is also clear from the Iarg$§eries W({G},q) because of the noncommutativity of limits.9) at
[2(_)]. In Ref.[12] it was n_oted that the transfer matrix calcu- artain special points, and we have provided the necessary
lation used there can fail at the Beraha numhgrS(Be) . ¢jarification for a complete definition of this asymptotic
from the discussion that we have given in Sec. Il, we wouldrnction. Using mathematical results on chromatic polyno-
view this as _aspecmc realization of the general noncommugyiais for several families of grapHs}, we have calculated
tativity of limits (1.9). N . W({G},q) exactly for these families. From these results, we
A general property one observes in Fig. 5 is that for thesg,ye getermined the nonanalytic boundaries separating vari-
three lattices, for a fixed value off in the rangeq o5 regions in the complexs plane for each of the
=4, W(A,q) is a monotonically decreasing function of the \yrG1 q). We have also studied the zeros of chromatic
lattice coordination numbefand a monotonically increasing 4y nomials for these families of graphs and have proved a
function of the lattice “girth” v, defined[S] as the number ,o5rem stating that for some families, all but a finite set of
of bonds or, equivalently, vertices contained in a MiNIMUM-hege zeros lie exactly on certain unit circles centered at posi-

distance circuit. Here{=3,4,6 and y=6,43 for A e integer points on the reglaxis. Using the connection of
=hc,sq,tri. The dependence on the girth is easily understood,-omatic polynomials to the partition function of the

The smaller the girth, the more stringent the constraint tha&-state Potts antiferromagnet on a lattiteat T=0, in con-

no two colors on adjacent vertices can be the same. Concer[h‘nction with a generalization to both complexand com-

ing the dependence afywe note that for tree graphs, where o temperature, we have presented another theorem speci-
one can vary( for fixed y (y=2), P(T,.,q), and hence ny the position of the maximaffinite) real pointgg(A)
W({T},q) are actually independent df[cf. Eq. (4.1)]. This  \yparew({Gl=A,q) is nonanalytic and have applied this to

is also true for the magnitudgV(A.,q)| for real negative  yetermineq, on the square and honeycomb lattices. Finally,
we have given Monte Carlo measurementd\dhc,q) [and
W(sqq)] for integral 3=q<10 and compared these with
largeq series. Our results illustrate the fascinating and deep

For the bipartite'square and honeycomlattices, we ob-
serve the following general trend: Ag increases fromq

=3, the ratios connections between the mathematics of chromatic polyno-
mials and their limits, on the one hand, and the statistical
mechanics of antiferromagnetic Potts models, on the other.
W(A,q)  W(A,Q)
rw(A,q)= = (7.9
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